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A quantum theory of ferroelectricity in Rochelle salt is developed which is-an extension of

the two-sublattice model of Mitsui,

The isotope effects on deuteration are explained in a

natural way, and the spontaneous polarization, the polarization of the two sublattices, and

the dielectric constant are obtained as functions of temperature.

The dynamics of the sys-

tem is investigated for the case of deuterated Rochelle salt and is found to exhibit a two-

mode relaxational behavior.

The correlation time of one of these two modes is proportional

to the static dielectric constant and thus exhibits a critical slowing-down on approaching the
two Curie temperatures in agreement with the experimental data.

I. INTRODUCTION

Though Rochelle salt has been the first ferroelec-
tric crystal to be discovered, ! it is still not under-
stood very well from a microscopic point of view.
The shifts of the upper Curie point towards higher
temperatures and of the lower towards lower tem-
peratures on deuteration demonstrate the role of
the hydrogen atoms in its ferroelectric behavior,
but no theoretical explanation of these isotope shifts
which increase the ferroelectric range by about
40% has been proposed so far. Whereas the lattice
dynamics of both hydrogen-bonded “order - disor-
der” —type ferroelectrics and of “displacive” ionic
ferroelectrics seems to be basically well under -

stood, this is not the case for Rochelle salt.

It is the purpose of this note to present a quan-
tum theory of ferroelectricity in Rochelle salt which
is capable of describing the isotope effects on deu-
teration as well as the dynamics of dipole moment
reversal in this crystal. The theory is essentially
a quantum extension of Mitsui’s model? along the
lines used® * to describe quantum effects in KH,PO,-
type ferroelectrics. It is based on recent neutron-
diffraction® and magnetic-resonance studies® " and
assumes that the ferroelectric dipoles move in
asymmetric double-well crystalline potentials and
form two interpenetrating sublattices® (Fig. 1).

The asymmetric double-well potentials for the two
sublattices are mirror images of each other, and
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the ground state is nonpolar due to the antiparallel
arrangement of the dipoles.

The Hamiltonian of the problem can be conve-
niently expressed in terms of quasi-spin-; opera-
tors,® where S,=+3 designates a dipole in the
“right” equilibrium site and S,= -3 in the “left”
equilibrium site:

== I [, (555 S5 452 SE) 4Ky S5

-202. (S +8¥)-a 2 (1) -s8)
i H
-2pE2. (S +8%) . R ¢))
j

The indices (1) and (2) refer to the two sublattices,
J and K are the effective interaction constants of
dipoles belonging to the same and different sublat-
tice, respectively, A is a measure of the asym-
metry of the local crystalline potential, u is the
magnitude of the dipole moment interacting with
the external electric field E, and € is the tunneling
integral which measures the amount of delocaliza-
tion of the ferroelectric dipoles.

II. EQUILIBRIUM PROPERTIES

In the molecular field approximation, the Hamil-
tonian (1) becomes

—=Hn2 S +Hp 2o S +H,Z (S5 +57), (2)

where
Hy=2J (S Y+ K(S{2) + A+ 2uE | (3a)
Hp= 27 (SE)+K (S —A+2uE (3b)
Hy=H,=H, =29, (3c)

and where the bracket stands for a thermal average.
The molecular field thus forms a vector H,
=(H,0,H,;), i=1,2 in our pseudo-spin-space, which
interacts with the spin variables and which takes on
different values for the two sublattices. The ther-
mal expectation values of the two sublattice polar-
izations, (S{) and (S{¥), are obtained by solving
the two coupled equations

(S =5(H,, / |H, |) tanh(} BIH,|), (4a)

(S§7) =4 (H,q / 1H, | tanh(} 815, ), (40)

where B=1/kT. The spontaneous polarization is
obtained from

P=Nu((SM )+, (5)

with N being the number of dipoles per unit volume,
and the dielectric constant from

_(4P)  _ __4NpPe
60(6—1)_<dE>E=0 "1-aK+20) ’

where €,=47X10"!2 Asec/Vm and

(6)
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FIG. 1. Hypothetical asymmetric double-well poten-
tial for the motion of the ferroelectric dipoles (a), and

assumed arrangement of the dipoles in the two sublattices
of Rochelle salt (b). ‘
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a:ZH?_’ZO—)T tanh [%8|H,(0)|]
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with H,(0)=H ;(E =0). The two Curie temperatures,
T=Tc; and T =Tgy, where €~>, are obtained as
solutions of the equation

1-aK+2J)=0. (8)

Using A=873 cm~!, K=1560 cm~', J=144 cm™,
2=0, and 1 =4.9 D, a rather good agreement be-
tween the experimental and theoretical Curie tem-
peratures, dielectric constant, and polarization
values for deuterated Rochelle salt can be obtained.
The isotope shifts on replacing hydrogen for deu-
terium are then obtained by introducing a nonzero
value of the tunneling integral 2~30 cm~!. Though
the numerical values of these constants are only
estimates and may not be unique, it is nevertheless
encouraging that all equilibrium dielectric prop-
erties of normal and deuterated Rochelle salt can
be described by such a simple model.

Figure 2 shows the temperature dependence of
the two sublattice polarizations and of the reduced
spontaneous polarization for deuterated Rochelle
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salt. For T <Tgy, we have (S{!") = —(5{?), so that the
polarizations of the two sublattices cancel eachother,
and the low-temperature phase is antipolar. It
should be noted that according to Fig. 2, the low-
temperature phase is not completely ordered. In
the intermediate polarized phase, we have (S‘)
#-(S'?’), The temperature dependence of the two
sublattice polarizations show here some similarity
with the temperature dependence of the electric-
field-gradient tensor at the Na sites.® In the high-
temperature phase T >Tg,, the sublattice polariza-
tions again cancel each other, (S{V)=—-(s?’), but
the disorder is significantly larger than for T < Tg,.

III. DYNAMIC BEHAVIOR

Let us now investigate the dynamic behavior of
this system in the random-phase approximation
(RPA). For sake of simplicity we put =0, thus
limiting ourselves to the case of deuterated Rochelle
salt. The dipolar system is supposed to be in ther-
mal contact with a large heat bath. Following the
treatment of the Ising model by Kubo and Suzuki, 8
we assume that a master equation exists which can
be written as

d
Et- P(Szl: te SxN, t): - jE Wj (Sgi) P(Szh ter SEN, t)

+Zj Wi(=S)P(Se,* ** =Sg,*** Sems 8) (9)

where P(S,, *** S,x,t) is the probability of finding
the quasispins in the configuration (S, *** S.y), and
the transition probability W,(S,;) can be expressed®
as

(10)

where 7, ts the correlation time of a noninteracting

W;(S,;) = (1/270) (1 - 2S,; tanhs BH;) ,
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FIG. 2. Temperature dependence of the two sublattice
polarizations and the reduced spontaneous polarization in
deuterated Rochelle salt. Experimental data (Ref. 1) —
circles — are included for comparison.
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dipole, H; is the local field at the spin j expressed
in energy units, and

(Ses(t)) = (‘g) SeyP(Sg* Savs 1) (11)

with the sum being taken over all quasi-spin-con-
figurations. Introducing the collective coordinates
as Fourier components

asi{(a) =N'1/221 532'13) el 'R'J, K=1,2 (12)

of the small deviations from the molecular field
solution (S{¥7)

888 = (SU (1)) - (s) (13)
and using
Jq)=2y Ty e EeR (19)

one gets from (9) the relaxation equations in the
RPA as

d o~
Ty 2 0558k = - 051} +5B[20@)05( +K (@ 05(4]

x{1 - tanh®[} BH,,(0)] }, (15)

d
To 75 S = - 68%2) +1B[2J(q) 6S2Y +K(@S ]

x {1 - tanh® [} BH,,(0)]} . (16)
Looking for solutions of the form
oY =aet/™, os@=bet/"t (17)

we get a system of homogeneous linear equations
for a and b, which has a nontrivial solution only if

To 4. RI(4) _ gI(9)
Toms . 4cosh®[pH.(0)] ~ 4cosh®[BAH,,(0)

s [ (@] , @
16 cosh® [ AH,(0)] cosh®[; BH,,(0)] 16

1/2

1 1 2
x( coshEL BH(0)]  costL AR 0)] ) ]

’
(18)
so that the general solution is a linear combination
of these two solutions

S =Aa,e”t/"d + Baye~t/"a (19a)

Sy =Abje t/"a+ Bb, et ", (19p)

where A and B are relative weights of the two solu-
tions which depend on the initial conditions.

The system thus exhibits a two-mode relaxation
behavior for each ff Of particular interest is the
polarization relaxation time which is obtained in
the limit g=0. In the unpolarized phase (P=0) we
then obtain

Too_q, BK — 2J)

Ty 4 cosh®[; BH,(0)] ’ (202)
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FIG. 3. Temperature dependence of the two relaxa-
tion times 7¢/7y and 7¢/T, for deuterated Rochelle salt
in the limit ¢ =0,

Ty _4__ BK+2J)

T,  cosh’[3BH,,(0)] ° (20b)
Since for T=T,,

Bo(K +2J) = 4cosh2f§ﬁcH1,(0)] , (21)

To/T, exhibits a critical slowing down (7o/7,~ 0) as
T¢y or Tc, is approached from either side, where-
as 7o/, exhibits no significant anomaly and stays
high,

The temperature dependences of the two relaxa-
tion times are shown in Fig. 3. It is obvious that
7o/, exhibits the same anomalous temperature de-
pendence as the dielectric relaxation time mea-
sured by Sandy and Jones® and Akao and Sasaki. !°

The fact that a monodispersive dielectric relaxa-
tion behavior is experimentally observed can be
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easily understood in the following way: In the un-
polarized phase both sublattices are equivalent and
are equally disturbed, when the system is placed
in a constant electric field, so that the initial con-
dition for polarization relaxation is

85¢%) (0) = 65'2(0) . (22)
From Eqgs. (19) and (22) we have
6512 (0)/853) (0) = Aa, + Ba, /Ab, +Bby=1 . (23)

For the unpolarized phase we can get, solving Egs.
(15) and (16),

ay/by=~1, ay/b=1, (24)

so that A =0, B#0 and we have a single-mode polar-
ization relaxation behavior

ésg«)ho =azemt/m, 53:?)4) =bye”t/" (25)

characterized by 7,.

For the polarized phase the two sublattices are
not equivalent, and the ratios 85."(0)/55%2(0)
#a,/b,, a,/b, are temperature dependent and are
generally not equal to 1, Thus A+ 0 and B# 0 and
a two-mode polarization relaxation results. But as
T, 7y and A < B only a single-mode dielectric re-
laxation behavior is expected to be observed. This
agrees rather well with the dielectric relaxation
measurements of Sandy and Jones, ? who find a sin-
gle-mode relaxation behavior in the paraelectric
as well as in the ferroelectric phase. What is even
more important is that the predicted [Eq. (20b)]
and observed® temperature dependences of 7, agree
rather well.

The present theory thus seems to give an adequate
description both of the equilibrium dielectric prop-
erties of Rochelle salt and of its dynamics.

The dynamics of undeuterated Rochelle salt is
reserved for a subsequent paper.
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